Encode non-numeric columns

This commit is contained in:
coolneng 2020-12-31 05:05:27 +01:00
parent c515068c7e
commit 3848a25c32
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
1 changed files with 19 additions and 8 deletions

View File

@ -1,5 +1,5 @@
from pandas import DataFrame, read_csv
from sklearn.preprocessing import LabelEncoder, normalize
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import KFold
@ -12,22 +12,29 @@ def construct_dataframes(train, test):
return df_list
def drop_null_values(df_list) -> DataFrame:
def drop_null_values(df_list):
for df in df_list:
df.dropna(inplace=True)
df.drop(columns="Tipo_marchas", inplace=True)
return df_list
def rename_columns(df_list) -> DataFrame:
for df in df_list:
df.columns = df.columns.str.lower()
return df_list
def trim_column_names(df_list) -> DataFrame:
columns = ["Consumo", "Motor_CC", "Potencia"]
columns = ["consumo", "motor_CC", "potencia"]
for df in df_list:
for col in columns:
df[col] = df[col].str.replace(pat="[^.0-9]", repl="").astype(float)
return df_list
def encode_fields(df_list):
def encode_columns(df_list):
label_encoder = LabelEncoder()
files = [
"ao"
"asientos"
@ -40,10 +47,12 @@ def encode_fields(df_list):
"motor_cc"
"nombre"
"potencia"
"potencia"
]
for data in files:
pass
for df in df_list:
label = label_encoder.fit(read_csv("data/" + data + ".csv", squeeze=True))
df[data] = label.transform(df[data])
return df_list
def split_k_sets(df):
@ -53,6 +62,8 @@ def split_k_sets(df):
def parse_data(train, test):
df_list = construct_dataframes(train=train, test=test)
processed_df_list = drop_null_values(df_list)
renamed_df_list = rename_columns(df_list)
processed_df_list = drop_null_values(renamed_df_list)
numeric_df_list = trim_column_names(processed_df_list)
return numeric_df_list
encoded_df_list = encode_columns(numeric_df_list)
return encoded_df_list