Add basic preprocessing functions
This commit is contained in:
parent
d656c32abe
commit
214b7093f0
|
@ -0,0 +1,29 @@
|
|||
from pandas import DataFrame, read_csv
|
||||
from sklearn.preprocessing import normalize
|
||||
from sklearn.model_selection import KFold
|
||||
|
||||
|
||||
def replace_values(df) -> DataFrame:
|
||||
for column in df.columns:
|
||||
df[column].fillna(value=df[column].mean(), inplace=True)
|
||||
return df
|
||||
|
||||
|
||||
def remove_letters(df) -> DataFrame:
|
||||
columns = ["Consumo", "Motor_CC", "Potencia"]
|
||||
processed_df = df.copy()
|
||||
for col in columns:
|
||||
processed_df[col] = df[col].str.replace(pat="[^.0-9]", repl="").astype(float)
|
||||
return processed_df
|
||||
|
||||
|
||||
def split_k_sets(df):
|
||||
k_fold = KFold(shuffle=True, random_state=42)
|
||||
return k_fold.split(df)
|
||||
|
||||
|
||||
def parse_data(source) -> DataFrame:
|
||||
df = read_csv(filepath_or_buffer=source, na_values="?")
|
||||
processed_df = df.dropna()
|
||||
numeric_df = remove_letters(processed_df)
|
||||
return numeric_df
|
Loading…
Reference in New Issue