Separate each part of the lab in a folder

This commit is contained in:
coolneng 2020-12-09 14:43:47 +01:00
parent 280c96f7c9
commit f49764bf41
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
6 changed files with 49 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

After

Width:  |  Height:  |  Size: 64 KiB

49
src/P2/preprocessing.py Normal file
View File

@ -0,0 +1,49 @@
from pandas import read_csv
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
def replace_values(df):
columns = ["BI-RADS", "Margin", "Density", "Age"]
for column in columns:
df[column].fillna(value=df[column].mean(), inplace=True)
return df
def process_na(df, action):
if action == "drop":
return df.dropna()
elif action == "fill":
return replace_values(df)
else:
print("Unknown action selected. The choices are: ")
print("fill: fills the na values with the mean")
print("drop: drops the na values")
exit()
def encode_columns(df):
label_encoder = LabelEncoder()
encoded_df = df.copy()
encoded_df["Shape"] = label_encoder.fit_transform(df["Shape"])
encoded_df["Severity"] = label_encoder.fit_transform(df["Severity"])
return encoded_df
def split_train_target(df):
train_data = df.drop(columns=["Severity"])
target_data = df["Severity"]
return train_data, target_data
def split_k_sets(df):
k_fold = KFold(shuffle=True, random_state=42)
return k_fold.split(df)
def parse_data(source, action):
df = read_csv(filepath_or_buffer=source, na_values="?")
processed_df = process_na(df=df, action=action)
encoded_df = encode_columns(df=processed_df)
test_data, target_data = split_train_target(df=encoded_df)
return test_data, target_data