Replace the samples argument with cluster number
This commit is contained in:
parent
b4e90c1174
commit
e63406c0a8
|
@ -3,18 +3,18 @@ from sys import argv
|
|||
|
||||
from matplotlib.pyplot import *
|
||||
from pandas import DataFrame
|
||||
from seaborn import heatmap, set_style, set_theme, pairplot
|
||||
from seaborn import clustermap, set_style, set_theme, pairplot
|
||||
from sklearn.metrics import silhouette_score, calinski_harabasz_score
|
||||
from sklearn.cluster import KMeans, Birch, SpectralClustering, MeanShift, DBSCAN
|
||||
|
||||
from preprocessing import parse_data, filter_dataframe
|
||||
|
||||
|
||||
def choose_model(model):
|
||||
def choose_model(model, cluster_number):
|
||||
if model == "kmeans":
|
||||
return KMeans(random_state=42)
|
||||
return KMeans(n_clusters=cluster_number, random_state=42)
|
||||
elif model == "birch":
|
||||
return Birch()
|
||||
return Birch(n_clusters=cluster_number)
|
||||
elif model == "spectral":
|
||||
return SpectralClustering()
|
||||
elif model == "meanshift":
|
||||
|
@ -23,9 +23,9 @@ def choose_model(model):
|
|||
return DBSCAN()
|
||||
|
||||
|
||||
def predict_data(data, model, results, sample):
|
||||
def predict_data(data, model, cluster_number, results):
|
||||
model_name = model
|
||||
model = choose_model(model)
|
||||
model = choose_model(model=model, cluster_number=cluster_number)
|
||||
start_time = time.time()
|
||||
prediction = model.fit_predict(data)
|
||||
execution_time = time.time() - start_time
|
||||
|
@ -35,7 +35,6 @@ def predict_data(data, model, results, sample):
|
|||
X=data,
|
||||
labels=prediction,
|
||||
metric="euclidean",
|
||||
sample_size=sample,
|
||||
random_state=42,
|
||||
)
|
||||
populated_results = populate_results(
|
||||
|
@ -52,10 +51,13 @@ def predict_data(data, model, results, sample):
|
|||
|
||||
def plot_heatmap(results):
|
||||
fig = figure(figsize=(20, 10))
|
||||
heatmap(
|
||||
data=results,
|
||||
cmap="Blues",
|
||||
square=True,
|
||||
results.reset_index()
|
||||
matrix = results["prediction"]
|
||||
print(matrix)
|
||||
clustermap(
|
||||
data=matrix,
|
||||
cmap="mako",
|
||||
metric="euclidean",
|
||||
annot=True,
|
||||
)
|
||||
fig_title = "Heatmap"
|
||||
|
@ -66,10 +68,10 @@ def plot_heatmap(results):
|
|||
|
||||
def plot_scatter_plot(results):
|
||||
fig = figure(figsize=(20, 10))
|
||||
original_data = results.drop("prediction")
|
||||
matrix = results.filter(items=["input", "prediction"])
|
||||
pairplot(
|
||||
data=results,
|
||||
vars=original_data,
|
||||
vars=matrix,
|
||||
hue="prediction",
|
||||
palette="Paired",
|
||||
diag_kind="hist",
|
||||
|
@ -138,12 +140,14 @@ def construct_case(df, choice):
|
|||
|
||||
|
||||
def usage():
|
||||
print("Usage: " + argv[0] + "<preprocessing action> <case> <sample size>")
|
||||
print("Usage: " + argv[0] + "<preprocessing action> <case> <number of clusters>")
|
||||
print("preprocessing actions:")
|
||||
print("fill: fills the na values with the mean")
|
||||
print("drop: drops the na values")
|
||||
print("cases: choice of case study")
|
||||
print("sample size: size of the sample when computing the Silhouette Coefficient")
|
||||
print(
|
||||
"number of clusters: number of clusters for the algorithms that use a fixed number"
|
||||
)
|
||||
exit()
|
||||
|
||||
|
||||
|
@ -151,7 +155,7 @@ def main():
|
|||
models = ["kmeans", "birch", "spectral", "meanshift", "dbscan"]
|
||||
if len(argv) != 4:
|
||||
usage()
|
||||
case, sample = argv[2], int(argv[3])
|
||||
case, cluster_number = argv[2], int(argv[3])
|
||||
data = parse_data(source="data/accidentes_2013.csv", action=str(argv[1]))
|
||||
individual_result, complete_results = create_result_dataframes()
|
||||
case_data = construct_case(df=data, choice=case)
|
||||
|
@ -161,13 +165,13 @@ def main():
|
|||
data=filtered_data,
|
||||
model=model,
|
||||
results=individual_result,
|
||||
sample=sample,
|
||||
cluster_number=cluster_number,
|
||||
)
|
||||
complete_results = complete_results.append(
|
||||
individual_result.append(model_results)
|
||||
)
|
||||
complete_results.set_index("model")
|
||||
print(complete_results)
|
||||
show_results(results=complete_results)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue