Plot roc_auc_curve and add plumbing for plotting

This commit is contained in:
coolneng 2020-12-08 14:08:47 +01:00
parent 3dd13a6fb5
commit c5a147e5df
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
2 changed files with 115 additions and 36 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 83 KiB

View File

@ -1,12 +1,15 @@
from numpy import mean
from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score
from sklearn.model_selection import cross_val_score
from numpy import mean, arange
from sklearn.metrics import confusion_matrix, roc_auc_score, roc_curve
from sklearn.model_selection import cross_val_predict
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import scale
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
from seaborn import set_theme
from matplotlib.pyplot import *
from pandas import DataFrame
from sys import argv
@ -24,65 +27,141 @@ def choose_model(model):
return DecisionTreeClassifier(random_state=42)
elif model == "neuralnet":
return MLPClassifier(hidden_layer_sizes=10)
else:
print("Unknown model selected. The choices are: ")
print("gnb: Gaussian Naive Bayes")
print("svc: Linear Support Vector Classification")
print("knn: K-neighbors")
print("tree: Decision tree")
print("neuralnet: MLP Classifier")
exit()
def predict_data(data, target, model):
def predict_data(data, target, model, results):
model = choose_model(model)
if model == "knn":
data = scale(data)
accuracy_scores = []
confusion_matrices = []
auc = []
confusion_matrices, auc, fpr, tpr = [], [], [], []
for train_index, test_index in split_k_sets(data):
model.fit(data.iloc[train_index], target.iloc[train_index])
prediction = model.predict(data.iloc[test_index])
accuracy_scores.append(accuracy_score(target.iloc[test_index], prediction))
confusion_matrices.append(confusion_matrix(target.iloc[test_index], prediction))
auc.append(roc_auc_score(target.iloc[test_index], prediction))
cv_score = cross_val_score(model, data, target, cv=10)
evaluate_performance(
confusion_matrix=mean(confusion_matrices, axis=0),
accuracy=mean(accuracy_scores),
cv_score=mean(cv_score),
fpr_item, tpr_item, _ = roc_curve(target.iloc[test_index], prediction)
fpr.append(fpr_item)
tpr.append(tpr_item)
populated_results = populate_results(
df=results,
model=model,
fpr=mean(fpr, axis=0),
tpr=mean(tpr, axis=0),
auc=mean(auc),
confusion_matrix=mean(confusion_matrices, axis=0),
)
return populated_results
def plot_roc_auc_curve(model, results):
rounded_auc = round(results.loc[model]["auc"], 3)
plot(
results.loc[model]["fpr"],
results.loc[model]["tpr"],
label=f"{model} , AUC={rounded_auc}",
)
xticks(arange(0.0, 1.0, step=0.1))
yticks(arange(0.0, 1.0, step=0.1))
legend(loc="lower right")
def plot_confusion_matrix(model, results):
matrix = results.loc[model]["confusion_matrix"]
classes = ["Negative", "Positive"]
for item in matrix:
text(x=0.5, y=0.5, s=item)
xticks(ticks=arange(len(classes)), labels=classes)
yticks(ticks=arange(len(classes)), labels=classes)
def choose_plot_type(type, model, results):
if type == "roc":
plot_roc_auc_curve(model, results)
elif type == "confusion_matrix":
plot_confusion_matrix(model, results)
def plot_individual_figure(results, type, x_axis, y_axis, fig_title):
fig = figure(figsize=(8, 6))
for model in results.index:
choose_plot_type(type, model, results)
xlabel(x_axis)
ylabel(y_axis)
title(fig_title)
show()
fig.savefig(f"docs/assets/{fig_title.replace(' ', '_').lower()}.png")
# TODO Add cross_val_score
def plot_all_figures(results):
set_theme()
plot_individual_figure(
results,
type="roc",
x_axis="fpr",
y_axis="tpr",
fig_title="ROC AUC curve",
)
plot_individual_figure(
results,
type="confusion_matrix",
x_axis="fpr",
y_axis="tpr",
fig_title="Confusion Matrix",
)
def evaluate_performance(confusion_matrix, accuracy, cv_score, auc):
print("Accuracy Score: " + str(accuracy))
print("Confusion matrix: ")
print(str(confusion_matrix))
print("Cross validation score: " + str(cv_score))
print("AUC: " + str(auc))
def create_result_dataframes():
results = DataFrame(columns=["model", "fpr", "tpr", "auc", "confusion_matrix"])
indexed_results = results.set_index("model")
return indexed_results, indexed_results
def populate_results(df, model, fpr, tpr, auc, confusion_matrix):
renamed_model = rename_model(model=f"{model}")
columns = ["model", "fpr", "tpr", "auc", "confusion_matrix"]
values = [renamed_model, fpr, tpr, auc, confusion_matrix]
dictionary = dict(zip(columns, values))
populated_df = df.append(dictionary, ignore_index=True)
return populated_df
def rename_model(model):
short_name = ["gnb", "svc", "knn", "tree", "neuralnet"]
models = [
"GaussianNB()",
"LinearSVC(random_state=42)",
"KNeighborsClassifier(n_neighbors=10)",
"DecisionTreeClassifier(random_state=42)",
"MLPClassifier(hidden_layer_sizes=10)",
]
mapping = dict(zip(models, short_name))
return mapping[model]
def usage():
print("Usage: " + argv[0] + "<preprocessing action> <model>")
print("Usage: " + argv[0] + "<preprocessing action>")
print("preprocessing actions:")
print("fill: fills the na values with the mean")
print("drop: drops the na values")
print("models:")
print("gnb: Gaussian Naive Bayes")
print("svc: Linear Support Vector Classification")
print("knn: K-neighbors")
print("tree: Decision tree")
print("neuralnet: MLP Classifier")
exit()
def main():
if len(argv) != 3:
models = ["gnb", "svc", "knn", "tree", "neuralnet"]
if len(argv) != 2:
usage()
data, target = parse_data(source="data/mamografia.csv", action=str(argv[1]))
predict_data(data=data, target=target, model=str(argv[2]))
individual_result, complete_results = create_result_dataframes()
for model in models:
model_results = predict_data(
data=data, target=target, model=model, results=individual_result
)
complete_results = complete_results.append(
individual_result.append(model_results)
)
indexed_results = complete_results.set_index("model")
plot_all_figures(results=indexed_results)
if __name__ == "__main__":