Plot roc_auc_curve and add plumbing for plotting
This commit is contained in:
parent
3dd13a6fb5
commit
c5a147e5df
Binary file not shown.
After Width: | Height: | Size: 83 KiB |
|
@ -1,12 +1,15 @@
|
||||||
from numpy import mean
|
from numpy import mean, arange
|
||||||
from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score
|
from sklearn.metrics import confusion_matrix, roc_auc_score, roc_curve
|
||||||
from sklearn.model_selection import cross_val_score
|
from sklearn.model_selection import cross_val_predict
|
||||||
from sklearn.naive_bayes import GaussianNB
|
from sklearn.naive_bayes import GaussianNB
|
||||||
from sklearn.neural_network import MLPClassifier
|
from sklearn.neural_network import MLPClassifier
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
from sklearn.preprocessing import scale
|
from sklearn.preprocessing import scale
|
||||||
from sklearn.svm import LinearSVC
|
from sklearn.svm import LinearSVC
|
||||||
from sklearn.tree import DecisionTreeClassifier
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
|
from seaborn import set_theme
|
||||||
|
from matplotlib.pyplot import *
|
||||||
|
from pandas import DataFrame
|
||||||
|
|
||||||
from sys import argv
|
from sys import argv
|
||||||
|
|
||||||
|
@ -24,65 +27,141 @@ def choose_model(model):
|
||||||
return DecisionTreeClassifier(random_state=42)
|
return DecisionTreeClassifier(random_state=42)
|
||||||
elif model == "neuralnet":
|
elif model == "neuralnet":
|
||||||
return MLPClassifier(hidden_layer_sizes=10)
|
return MLPClassifier(hidden_layer_sizes=10)
|
||||||
else:
|
|
||||||
print("Unknown model selected. The choices are: ")
|
|
||||||
print("gnb: Gaussian Naive Bayes")
|
|
||||||
print("svc: Linear Support Vector Classification")
|
|
||||||
print("knn: K-neighbors")
|
|
||||||
print("tree: Decision tree")
|
|
||||||
print("neuralnet: MLP Classifier")
|
|
||||||
exit()
|
|
||||||
|
|
||||||
|
|
||||||
def predict_data(data, target, model):
|
def predict_data(data, target, model, results):
|
||||||
model = choose_model(model)
|
model = choose_model(model)
|
||||||
if model == "knn":
|
if model == "knn":
|
||||||
data = scale(data)
|
data = scale(data)
|
||||||
accuracy_scores = []
|
confusion_matrices, auc, fpr, tpr = [], [], [], []
|
||||||
confusion_matrices = []
|
|
||||||
auc = []
|
|
||||||
for train_index, test_index in split_k_sets(data):
|
for train_index, test_index in split_k_sets(data):
|
||||||
model.fit(data.iloc[train_index], target.iloc[train_index])
|
model.fit(data.iloc[train_index], target.iloc[train_index])
|
||||||
prediction = model.predict(data.iloc[test_index])
|
prediction = model.predict(data.iloc[test_index])
|
||||||
accuracy_scores.append(accuracy_score(target.iloc[test_index], prediction))
|
|
||||||
confusion_matrices.append(confusion_matrix(target.iloc[test_index], prediction))
|
confusion_matrices.append(confusion_matrix(target.iloc[test_index], prediction))
|
||||||
auc.append(roc_auc_score(target.iloc[test_index], prediction))
|
auc.append(roc_auc_score(target.iloc[test_index], prediction))
|
||||||
cv_score = cross_val_score(model, data, target, cv=10)
|
fpr_item, tpr_item, _ = roc_curve(target.iloc[test_index], prediction)
|
||||||
evaluate_performance(
|
fpr.append(fpr_item)
|
||||||
confusion_matrix=mean(confusion_matrices, axis=0),
|
tpr.append(tpr_item)
|
||||||
accuracy=mean(accuracy_scores),
|
populated_results = populate_results(
|
||||||
cv_score=mean(cv_score),
|
df=results,
|
||||||
|
model=model,
|
||||||
|
fpr=mean(fpr, axis=0),
|
||||||
|
tpr=mean(tpr, axis=0),
|
||||||
auc=mean(auc),
|
auc=mean(auc),
|
||||||
|
confusion_matrix=mean(confusion_matrices, axis=0),
|
||||||
|
)
|
||||||
|
return populated_results
|
||||||
|
|
||||||
|
|
||||||
|
def plot_roc_auc_curve(model, results):
|
||||||
|
rounded_auc = round(results.loc[model]["auc"], 3)
|
||||||
|
plot(
|
||||||
|
results.loc[model]["fpr"],
|
||||||
|
results.loc[model]["tpr"],
|
||||||
|
label=f"{model} , AUC={rounded_auc}",
|
||||||
|
)
|
||||||
|
xticks(arange(0.0, 1.0, step=0.1))
|
||||||
|
yticks(arange(0.0, 1.0, step=0.1))
|
||||||
|
legend(loc="lower right")
|
||||||
|
|
||||||
|
|
||||||
|
def plot_confusion_matrix(model, results):
|
||||||
|
matrix = results.loc[model]["confusion_matrix"]
|
||||||
|
classes = ["Negative", "Positive"]
|
||||||
|
for item in matrix:
|
||||||
|
text(x=0.5, y=0.5, s=item)
|
||||||
|
xticks(ticks=arange(len(classes)), labels=classes)
|
||||||
|
yticks(ticks=arange(len(classes)), labels=classes)
|
||||||
|
|
||||||
|
|
||||||
|
def choose_plot_type(type, model, results):
|
||||||
|
if type == "roc":
|
||||||
|
plot_roc_auc_curve(model, results)
|
||||||
|
elif type == "confusion_matrix":
|
||||||
|
plot_confusion_matrix(model, results)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_individual_figure(results, type, x_axis, y_axis, fig_title):
|
||||||
|
fig = figure(figsize=(8, 6))
|
||||||
|
for model in results.index:
|
||||||
|
choose_plot_type(type, model, results)
|
||||||
|
xlabel(x_axis)
|
||||||
|
ylabel(y_axis)
|
||||||
|
title(fig_title)
|
||||||
|
show()
|
||||||
|
fig.savefig(f"docs/assets/{fig_title.replace(' ', '_').lower()}.png")
|
||||||
|
|
||||||
|
|
||||||
|
# TODO Add cross_val_score
|
||||||
|
def plot_all_figures(results):
|
||||||
|
set_theme()
|
||||||
|
plot_individual_figure(
|
||||||
|
results,
|
||||||
|
type="roc",
|
||||||
|
x_axis="fpr",
|
||||||
|
y_axis="tpr",
|
||||||
|
fig_title="ROC AUC curve",
|
||||||
|
)
|
||||||
|
plot_individual_figure(
|
||||||
|
results,
|
||||||
|
type="confusion_matrix",
|
||||||
|
x_axis="fpr",
|
||||||
|
y_axis="tpr",
|
||||||
|
fig_title="Confusion Matrix",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def evaluate_performance(confusion_matrix, accuracy, cv_score, auc):
|
def create_result_dataframes():
|
||||||
print("Accuracy Score: " + str(accuracy))
|
results = DataFrame(columns=["model", "fpr", "tpr", "auc", "confusion_matrix"])
|
||||||
print("Confusion matrix: ")
|
indexed_results = results.set_index("model")
|
||||||
print(str(confusion_matrix))
|
return indexed_results, indexed_results
|
||||||
print("Cross validation score: " + str(cv_score))
|
|
||||||
print("AUC: " + str(auc))
|
|
||||||
|
def populate_results(df, model, fpr, tpr, auc, confusion_matrix):
|
||||||
|
renamed_model = rename_model(model=f"{model}")
|
||||||
|
columns = ["model", "fpr", "tpr", "auc", "confusion_matrix"]
|
||||||
|
values = [renamed_model, fpr, tpr, auc, confusion_matrix]
|
||||||
|
dictionary = dict(zip(columns, values))
|
||||||
|
populated_df = df.append(dictionary, ignore_index=True)
|
||||||
|
return populated_df
|
||||||
|
|
||||||
|
|
||||||
|
def rename_model(model):
|
||||||
|
short_name = ["gnb", "svc", "knn", "tree", "neuralnet"]
|
||||||
|
models = [
|
||||||
|
"GaussianNB()",
|
||||||
|
"LinearSVC(random_state=42)",
|
||||||
|
"KNeighborsClassifier(n_neighbors=10)",
|
||||||
|
"DecisionTreeClassifier(random_state=42)",
|
||||||
|
"MLPClassifier(hidden_layer_sizes=10)",
|
||||||
|
]
|
||||||
|
mapping = dict(zip(models, short_name))
|
||||||
|
return mapping[model]
|
||||||
|
|
||||||
|
|
||||||
def usage():
|
def usage():
|
||||||
print("Usage: " + argv[0] + "<preprocessing action> <model>")
|
print("Usage: " + argv[0] + "<preprocessing action>")
|
||||||
print("preprocessing actions:")
|
print("preprocessing actions:")
|
||||||
print("fill: fills the na values with the mean")
|
print("fill: fills the na values with the mean")
|
||||||
print("drop: drops the na values")
|
print("drop: drops the na values")
|
||||||
print("models:")
|
|
||||||
print("gnb: Gaussian Naive Bayes")
|
|
||||||
print("svc: Linear Support Vector Classification")
|
|
||||||
print("knn: K-neighbors")
|
|
||||||
print("tree: Decision tree")
|
|
||||||
print("neuralnet: MLP Classifier")
|
|
||||||
exit()
|
exit()
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
if len(argv) != 3:
|
models = ["gnb", "svc", "knn", "tree", "neuralnet"]
|
||||||
|
if len(argv) != 2:
|
||||||
usage()
|
usage()
|
||||||
data, target = parse_data(source="data/mamografia.csv", action=str(argv[1]))
|
data, target = parse_data(source="data/mamografia.csv", action=str(argv[1]))
|
||||||
predict_data(data=data, target=target, model=str(argv[2]))
|
individual_result, complete_results = create_result_dataframes()
|
||||||
|
for model in models:
|
||||||
|
model_results = predict_data(
|
||||||
|
data=data, target=target, model=model, results=individual_result
|
||||||
|
)
|
||||||
|
complete_results = complete_results.append(
|
||||||
|
individual_result.append(model_results)
|
||||||
|
)
|
||||||
|
indexed_results = complete_results.set_index("model")
|
||||||
|
plot_all_figures(results=indexed_results)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
Loading…
Reference in New Issue