Implement preprocessing module for P2
This commit is contained in:
parent
f49764bf41
commit
b6b7ffc409
|
@ -1,16 +1,13 @@
|
|||
from pandas import read_csv
|
||||
from sklearn.model_selection import KFold
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from pandas import DataFrame, read_csv
|
||||
|
||||
|
||||
def replace_values(df):
|
||||
columns = ["BI-RADS", "Margin", "Density", "Age"]
|
||||
for column in columns:
|
||||
def replace_values(df) -> DataFrame:
|
||||
for column in df.columns:
|
||||
df[column].fillna(value=df[column].mean(), inplace=True)
|
||||
return df
|
||||
|
||||
|
||||
def process_na(df, action):
|
||||
def process_na(df, action) -> DataFrame:
|
||||
if action == "drop":
|
||||
return df.dropna()
|
||||
elif action == "fill":
|
||||
|
@ -22,28 +19,25 @@ def process_na(df, action):
|
|||
exit()
|
||||
|
||||
|
||||
def encode_columns(df):
|
||||
label_encoder = LabelEncoder()
|
||||
encoded_df = df.copy()
|
||||
encoded_df["Shape"] = label_encoder.fit_transform(df["Shape"])
|
||||
encoded_df["Severity"] = label_encoder.fit_transform(df["Severity"])
|
||||
return encoded_df
|
||||
def filter_dataframe(df) -> DataFrame:
|
||||
relevant_columns = [
|
||||
"HORA",
|
||||
"DIASEMANA",
|
||||
"COMUNIDAD_AUTONOMA",
|
||||
"ISLA",
|
||||
"TOT_HERIDOS_LEVES",
|
||||
"TOT_HERIDOS_GRAVES",
|
||||
"TOT_VEHICULOS_IMPLICADOS",
|
||||
"TOT_MUERTOS",
|
||||
"TIPO_VIA",
|
||||
"LUMINOSIDAD",
|
||||
"FACTORES_ATMOSFERICOS",
|
||||
]
|
||||
filtered_df = df.filter(items=relevant_columns)
|
||||
return filtered_df
|
||||
|
||||
|
||||
def split_train_target(df):
|
||||
train_data = df.drop(columns=["Severity"])
|
||||
target_data = df["Severity"]
|
||||
return train_data, target_data
|
||||
|
||||
|
||||
def split_k_sets(df):
|
||||
k_fold = KFold(shuffle=True, random_state=42)
|
||||
return k_fold.split(df)
|
||||
|
||||
|
||||
def parse_data(source, action):
|
||||
def parse_data(source, action) -> DataFrame:
|
||||
df = read_csv(filepath_or_buffer=source, na_values="?")
|
||||
processed_df = process_na(df=df, action=action)
|
||||
encoded_df = encode_columns(df=processed_df)
|
||||
test_data, target_data = split_train_target(df=encoded_df)
|
||||
return test_data, target_data
|
||||
return processed_df
|
||||
|
|
Loading…
Reference in New Issue