Remove imputation of values from part 2
This commit is contained in:
parent
8b2ce6b5c9
commit
59895f4b8a
|
@ -89,7 +89,6 @@ def plot_confusion_matrix(results):
|
|||
axes[i].set_title(matrix.index[i])
|
||||
fig_title = "Confusion Matrix"
|
||||
suptitle(fig_title)
|
||||
show()
|
||||
fig.savefig(f"docs/assets/{fig_title.replace(' ', '_').lower()}.png")
|
||||
|
||||
|
||||
|
@ -106,7 +105,6 @@ def plot_attributes_correlation(data, target):
|
|||
axes[i].set_title(transformed_data.columns[i])
|
||||
fig_title = "Attribute's correlation"
|
||||
suptitle(fig_title)
|
||||
show()
|
||||
fig.savefig(f"docs/assets/{fig_title.replace(' ', '_').lower()}.png")
|
||||
|
||||
|
||||
|
|
|
@ -8,18 +8,6 @@ def replace_values(df):
|
|||
return df
|
||||
|
||||
|
||||
def process_na(df, action):
|
||||
if action == "drop":
|
||||
return df.dropna()
|
||||
elif action == "fill":
|
||||
return replace_values(df)
|
||||
else:
|
||||
print("Unknown action selected. The choices are: ")
|
||||
print("fill: fills the na values with the mean")
|
||||
print("drop: drops the na values")
|
||||
exit()
|
||||
|
||||
|
||||
def filter_dataframe(df):
|
||||
relevant_columns = [
|
||||
"TOT_HERIDOS_LEVES",
|
||||
|
@ -39,8 +27,8 @@ def normalize_numerical_values(df):
|
|||
return df
|
||||
|
||||
|
||||
def parse_data(source, action):
|
||||
def parse_data(source):
|
||||
df = read_csv(filepath_or_buffer=source, na_values="?")
|
||||
processed_df = process_na(df=df, action=action)
|
||||
processed_df = df.dropna()
|
||||
normalized_df = normalize_numerical_values(df=processed_df)
|
||||
return normalized_df
|
||||
|
|
|
@ -3,7 +3,6 @@ from sys import argv
|
|||
|
||||
from matplotlib.pyplot import *
|
||||
from pandas import DataFrame
|
||||
from seaborn import clustermap, set_style, set_theme, pairplot
|
||||
from sklearn.metrics import silhouette_score, calinski_harabasz_score
|
||||
from sklearn.cluster import KMeans, Birch, SpectralClustering, MeanShift, DBSCAN
|
||||
|
||||
|
@ -49,47 +48,6 @@ def predict_data(data, model, cluster_number, results):
|
|||
return populated_results
|
||||
|
||||
|
||||
def plot_heatmap(results):
|
||||
fig = figure(figsize=(20, 10))
|
||||
results.reset_index()
|
||||
matrix = results["prediction"]
|
||||
print(matrix)
|
||||
clustermap(
|
||||
data=matrix,
|
||||
cmap="mako",
|
||||
metric="euclidean",
|
||||
annot=True,
|
||||
)
|
||||
fig_title = "Heatmap"
|
||||
title(fig_title)
|
||||
show()
|
||||
fig.savefig(f"docs/assets/{fig_title.replace(' ', '_').lower()}.png")
|
||||
|
||||
|
||||
def plot_scatter_plot(results):
|
||||
fig = figure(figsize=(20, 10))
|
||||
matrix = results.filter(items=["input", "prediction"])
|
||||
pairplot(
|
||||
data=results,
|
||||
vars=matrix,
|
||||
hue="prediction",
|
||||
palette="Paired",
|
||||
diag_kind="hist",
|
||||
)
|
||||
fig_title = "Scatter plot"
|
||||
title(fig_title)
|
||||
show()
|
||||
fig.savefig(f"docs/assets/{fig_title.replace(' ', '_').lower()}.png")
|
||||
|
||||
|
||||
def show_results(results):
|
||||
set_theme()
|
||||
set_style("white")
|
||||
plot_heatmap(results=results)
|
||||
plot_scatter_plot(results=results)
|
||||
print(results)
|
||||
|
||||
|
||||
def create_result_dataframes():
|
||||
results = DataFrame(
|
||||
columns=[
|
||||
|
@ -153,10 +111,10 @@ def usage():
|
|||
|
||||
def main():
|
||||
models = ["kmeans", "birch", "spectral", "meanshift", "dbscan"]
|
||||
if len(argv) != 4:
|
||||
if len(argv) != 3:
|
||||
usage()
|
||||
case, cluster_number = argv[2], int(argv[3])
|
||||
data = parse_data(source="data/accidentes_2013.csv", action=str(argv[1]))
|
||||
case, cluster_number = argv[1], int(argv[2])
|
||||
data = parse_data(source="data/accidentes_2013.csv")
|
||||
individual_result, complete_results = create_result_dataframes()
|
||||
case_data = construct_case(df=data, choice=case)
|
||||
filtered_data = filter_dataframe(df=case_data)
|
||||
|
@ -171,7 +129,7 @@ def main():
|
|||
individual_result.append(model_results)
|
||||
)
|
||||
complete_results.set_index("model")
|
||||
show_results(results=complete_results)
|
||||
print(complete_results)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue