Add incomplete processing module
This commit is contained in:
parent
1060677d1f
commit
0a54f7403b
|
@ -0,0 +1,195 @@
|
|||
import time
|
||||
from typing import Union
|
||||
from sys import argv
|
||||
|
||||
from matplotlib.pyplot import *
|
||||
from pandas import DataFrame
|
||||
from seaborn import heatmap, set_style, set_theme, pairplot
|
||||
from sklearn.metrics import silhouette_score, calinski_harabasz_score
|
||||
from sklearn.cluster import KMeans, Birch, AffinityPropagation, MeanShift, DBSCAN
|
||||
|
||||
from preprocessing import parse_data
|
||||
|
||||
|
||||
def choose_model(
|
||||
model,
|
||||
) -> Union[KMeans, Birch, AffinityPropagation, MeanShift, DBSCAN, None]:
|
||||
if model == "kmeans":
|
||||
return KMeans(random_state=42)
|
||||
elif model == "birch":
|
||||
return Birch()
|
||||
elif model == "affinity":
|
||||
return AffinityPropagation(random_state=42)
|
||||
elif model == "meanshift":
|
||||
return MeanShift()
|
||||
elif model == "dbscan":
|
||||
return DBSCAN()
|
||||
|
||||
|
||||
def predict_data(data, model, results, sample) -> DataFrame:
|
||||
model = choose_model(model)
|
||||
start_time = time.time()
|
||||
prediction = model.fit_predict(data)
|
||||
execution_time = time.time() - start_time
|
||||
calinski = calinski_harabasz_score(X=data, labels=prediction)
|
||||
silhouette = silhouette_score(
|
||||
X=data,
|
||||
labels=prediction,
|
||||
metric="euclidean",
|
||||
sample_size=sample,
|
||||
)
|
||||
populated_results = populate_results(
|
||||
df=results,
|
||||
model=model,
|
||||
prediction=prediction,
|
||||
clusters=len(prediction),
|
||||
calinski=calinski,
|
||||
silhouette=silhouette,
|
||||
time=execution_time,
|
||||
)
|
||||
return populated_results
|
||||
|
||||
|
||||
def plot_heatmap(results):
|
||||
fig = figure(figsize=(20, 10))
|
||||
heatmap(
|
||||
data=results,
|
||||
cmap="Blues",
|
||||
square=True,
|
||||
annot=True,
|
||||
)
|
||||
fig_title = "Heatmap"
|
||||
title(fig_title)
|
||||
show()
|
||||
fig.savefig(f"docs/assets/{fig_title.replace(' ', '_').lower()}.png")
|
||||
|
||||
|
||||
def plot_scatter_plot(results):
|
||||
fig = figure(figsize=(20, 10))
|
||||
original_data = results.drop("prediction")
|
||||
pairplot(
|
||||
data=results,
|
||||
vars=original_data,
|
||||
hue="prediction",
|
||||
palette="Paired",
|
||||
diag_kind="hist",
|
||||
)
|
||||
fig_title = "Scatter plot"
|
||||
title(fig_title)
|
||||
show()
|
||||
fig.savefig(f"docs/assets/{fig_title.replace(' ', '_').lower()}.png")
|
||||
|
||||
|
||||
def print_dataframe(df):
|
||||
df.set_index("model")
|
||||
output_df = df.filter["clusters", "silhouette", "calinski", "time"]
|
||||
print(output_df)
|
||||
|
||||
|
||||
def show_results(results):
|
||||
set_theme()
|
||||
set_style("white")
|
||||
plot_heatmap(results=results)
|
||||
plot_scatter_plot(results=results)
|
||||
print_dataframe(df=results)
|
||||
|
||||
|
||||
def create_result_dataframes():
|
||||
results = DataFrame(
|
||||
columns=[
|
||||
"clusters",
|
||||
"model",
|
||||
"prediction",
|
||||
"silhouette",
|
||||
"calinski-harabasz",
|
||||
"time",
|
||||
]
|
||||
)
|
||||
indexed_results = results.set_index("model")
|
||||
return indexed_results, indexed_results
|
||||
|
||||
|
||||
def populate_results(
|
||||
df, model, clusters, prediction, calinski, silhouette, time
|
||||
) -> DataFrame:
|
||||
renamed_model = rename_model(model=f"{model}")
|
||||
columns = [
|
||||
"model",
|
||||
"clusters",
|
||||
"prediction",
|
||||
"silhouette",
|
||||
"calinski-harabasz",
|
||||
"time",
|
||||
]
|
||||
values = [renamed_model, clusters, prediction, silhouette, calinski, time]
|
||||
dictionary = dict(zip(columns, values))
|
||||
populated_df = df.append(dictionary, ignore_index=True)
|
||||
return populated_df
|
||||
|
||||
|
||||
def rename_model(model) -> str:
|
||||
short_name = ["kmeans", "birch", "affinity", "meanshift", "dbscan"]
|
||||
models = [
|
||||
"KMean(random_state=42)",
|
||||
"AffinityPropagation(random_state=42)",
|
||||
"MeanShift()",
|
||||
"DBSCAN()",
|
||||
]
|
||||
mapping = dict(zip(models, short_name))
|
||||
return mapping[model]
|
||||
|
||||
|
||||
def construct_case(df, choice):
|
||||
cases = {
|
||||
"case1": df.loc[(df["LUMINOSIDAD"].str.contains("NOCHE"))],
|
||||
"case2": df.loc[
|
||||
(df["ISLA"].str.contains("NO_ES_ISLA") == False)
|
||||
& (df["FACTORES_ATMOSFERICOS"].str.contains("LLUVIA|LLOVIZNA"))
|
||||
],
|
||||
"case3": df.loc[(df["HORA"] > 19) & (df["TIPO_VIA"] == "AUTOPISTA")],
|
||||
"case4": df.loc[
|
||||
(df["COMUNIDAD_AUTONOMA"] == "Andalucía")
|
||||
& (df["LUMINOSIDAD"].str.contains("SIN ILUMINACIÓN"))
|
||||
],
|
||||
"case5": df.loc[
|
||||
(df["DIASEMANA"] == 7)
|
||||
& (df["COMUNIDAD_AUTONOMA"] == "Madrid, Comunidad de")
|
||||
],
|
||||
}
|
||||
return cases[choice]
|
||||
|
||||
|
||||
def usage():
|
||||
print("Usage: " + argv[0] + "<preprocessing action> <case> <sample size>")
|
||||
print("preprocessing actions:")
|
||||
print("fill: fills the na values with the mean")
|
||||
print("drop: drops the na values")
|
||||
print("cases: choice of case study")
|
||||
print("sample size: size of the sample when computing the Silhouette Coefficient")
|
||||
exit()
|
||||
|
||||
|
||||
def main():
|
||||
models = ["kmeans", "birch", "affinity", "meanshift", "dbscan"]
|
||||
if len(argv) != 4:
|
||||
usage()
|
||||
case, sample = argv[2], argv[3]
|
||||
data = parse_data(source="data/accidentes_2013.csv", action=str(argv[1]))
|
||||
individual_result, complete_results = create_result_dataframes()
|
||||
case_data = construct_case(df=data, choice=case)
|
||||
for model in models:
|
||||
model_results = predict_data(
|
||||
data=case_data,
|
||||
model=model,
|
||||
results=individual_result,
|
||||
sample=sample,
|
||||
)
|
||||
complete_results = complete_results.append(
|
||||
individual_result.append(model_results)
|
||||
)
|
||||
indexed_results = complete_results.set_index("model")
|
||||
show_results(results=indexed_results)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue