Show model performance directly from predict_data
This commit is contained in:
parent
de21b65ca0
commit
bdfc1c385d
|
@ -1,5 +1,5 @@
|
||||||
from numpy import mean
|
from numpy import mean
|
||||||
from sklearn.metrics import classification_report, confusion_matrix
|
from sklearn.metrics import confusion_matrix, accuracy_score
|
||||||
from sklearn.model_selection import cross_val_score
|
from sklearn.model_selection import cross_val_score
|
||||||
from sklearn.naive_bayes import GaussianNB
|
from sklearn.naive_bayes import GaussianNB
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
@ -25,31 +25,31 @@ def predict_data(data, target, model):
|
||||||
model = choose_model(model)
|
model = choose_model(model)
|
||||||
if model == "knn":
|
if model == "knn":
|
||||||
data = scale(data)
|
data = scale(data)
|
||||||
predictions = []
|
accuracy_scores = []
|
||||||
|
confusion_matrices = []
|
||||||
for train_index, test_index in split_k_sets(data):
|
for train_index, test_index in split_k_sets(data):
|
||||||
model.fit(data.iloc[train_index], target.iloc[train_index])
|
model.fit(data.iloc[train_index], target.iloc[train_index])
|
||||||
prediction = model.predict(data.iloc[test_index])
|
prediction = model.predict(data.iloc[test_index])
|
||||||
predictions.append(prediction)
|
accuracy_scores.append(accuracy_score(target.iloc[test_index], prediction))
|
||||||
return model, predictions
|
confusion_matrices.append(confusion_matrix(target.iloc[test_index], prediction))
|
||||||
|
cv_score = cross_val_score(model, data, target, cv=10)
|
||||||
|
evaluate_performance(
|
||||||
|
confusion_matrix=mean(confusion_matrices, axis=0),
|
||||||
|
accuracy=mean(accuracy_scores),
|
||||||
|
cv_score=mean(cv_score),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def evaluate_performance(predictions, model, data, target):
|
def evaluate_performance(confusion_matrix, accuracy, cv_score):
|
||||||
confusion_matrices = []
|
print("Accuracy Score: " + str(accuracy))
|
||||||
classification_reports = []
|
print("Confusion matrix: ")
|
||||||
score = cross_val_score(model, data, target, cv=10)
|
print(str(confusion_matrix))
|
||||||
for prediction in predictions:
|
print("Cross validation score: " + str(cv_score))
|
||||||
confusion_matrices.append(confusion_matrix(target, prediction))
|
|
||||||
classification_reports.append(classification_report(target, prediction))
|
|
||||||
print("Model:" + model)
|
|
||||||
print("Score: " + score)
|
|
||||||
print("Confusion matrix: " + mean(confusion_matrices))
|
|
||||||
print("Classification report: " + mean(classification_reports))
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
data, target = parse_data(source="../data/mamografia.csv", action="fill")
|
data, target = parse_data(source="data/mamografia.csv", action="drop")
|
||||||
model, predictions = predict_data(data=data, target=target, model="knn")
|
predict_data(data=data, target=target, model="svc")
|
||||||
evaluate_performance(predictions=predictions, model=model, data=data, target=target)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
Loading…
Reference in New Issue