Add MLPClassifier to models
This commit is contained in:
parent
7568aedf94
commit
525d231838
|
@ -2,6 +2,7 @@ from numpy import mean
|
||||||
from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score
|
from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score
|
||||||
from sklearn.model_selection import cross_val_score
|
from sklearn.model_selection import cross_val_score
|
||||||
from sklearn.naive_bayes import GaussianNB
|
from sklearn.naive_bayes import GaussianNB
|
||||||
|
from sklearn.neural_network import MLPClassifier
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
from sklearn.preprocessing import scale
|
from sklearn.preprocessing import scale
|
||||||
from sklearn.svm import LinearSVC
|
from sklearn.svm import LinearSVC
|
||||||
|
@ -19,6 +20,8 @@ def choose_model(model):
|
||||||
return KNeighborsClassifier(n_neighbors=10)
|
return KNeighborsClassifier(n_neighbors=10)
|
||||||
elif model == "tree":
|
elif model == "tree":
|
||||||
return DecisionTreeClassifier(random_state=42)
|
return DecisionTreeClassifier(random_state=42)
|
||||||
|
elif model == "neuralnet":
|
||||||
|
return MLPClassifier(hidden_layer_sizes=10)
|
||||||
|
|
||||||
|
|
||||||
def predict_data(data, target, model):
|
def predict_data(data, target, model):
|
||||||
|
@ -53,7 +56,7 @@ def evaluate_performance(confusion_matrix, accuracy, cv_score, auc):
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
data, target = parse_data(source="data/mamografia.csv", action="drop")
|
data, target = parse_data(source="data/mamografia.csv", action="drop")
|
||||||
predict_data(data=data, target=target, model="gnb")
|
predict_data(data=data, target=target, model="neuralnet")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
Loading…
Reference in New Issue