Add preprocessing module
This commit is contained in:
parent
f919985414
commit
127e13d370
|
@ -0,0 +1,71 @@
|
|||
* Experiments
|
||||
|
||||
We will first try to gather information about our dataset, by evaluating the statistics of our attributes.
|
||||
|
||||
#+BEGIN_SRC python
|
||||
from pandas import read_csv
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
|
||||
|
||||
def replace_values(df):
|
||||
columns = ["BI-RADS", "Margin", "Density", "Age"]
|
||||
for column in columns:
|
||||
df[column].fillna(value=df[column].mean(), inplace=True)
|
||||
return df
|
||||
|
||||
|
||||
def process_na(df, action):
|
||||
if action == "drop":
|
||||
return df.dropna()
|
||||
return replace_values(df)
|
||||
|
||||
|
||||
def encode_columns(df):
|
||||
encoder = LabelEncoder()
|
||||
encoder.fit(df["Shape"])
|
||||
|
||||
|
||||
def parse_data(source, action):
|
||||
df = read_csv(filepath_or_buffer=source, na_values="?")
|
||||
processed_df = process_na(df, action)
|
||||
return processed_df
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
|
||||
|
||||
#+BEGIN_SRC python
|
||||
df = parse_data("../data/mamografia.csv", "drop")
|
||||
print(df.describe())
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
: BI-RADS Age Margin Density
|
||||
: count 847.000000 847.000000 847.000000 847.000000
|
||||
: mean 4.322314 55.842975 2.833530 2.909091
|
||||
: std 0.703762 14.603754 1.564049 0.370292
|
||||
: min 0.000000 18.000000 1.000000 1.000000
|
||||
: 25% 4.000000 46.000000 1.000000 3.000000
|
||||
: 50% 4.000000 57.000000 3.000000 3.000000
|
||||
: 75% 5.000000 66.000000 4.000000 3.000000
|
||||
: max 6.000000 96.000000 5.000000 4.000000
|
||||
|
||||
We observe that *margin* and *density* are the columns with the most unknown values. The age group of our cohort is middle aged, the BI-RADS score is mostly in the suspicious category, the density is mostly low and the margin belongs to the microlobulated/obscured category.
|
||||
|
||||
We'll try to impute values, instead of dropping them, when they're invalid.
|
||||
|
||||
#+BEGIN_SRC python
|
||||
df = parse_data("../data/mamografia.csv", "replace")
|
||||
print(df.describe())
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
: BI-RADS Age Margin Density
|
||||
: count 961.000000 961.000000 961.000000 961.000000
|
||||
: mean 4.296142 55.487448 2.796276 2.910734
|
||||
: std 0.705555 14.442373 1.526880 0.365074
|
||||
: min 0.000000 18.000000 1.000000 1.000000
|
||||
: 25% 4.000000 45.000000 1.000000 3.000000
|
||||
: 50% 4.000000 57.000000 3.000000 3.000000
|
||||
: 75% 5.000000 66.000000 4.000000 3.000000
|
||||
: max 6.000000 96.000000 5.000000 4.000000
|
|
@ -2,4 +2,7 @@
|
|||
|
||||
with pkgs;
|
||||
|
||||
mkShell { buildInputs = [ python38Packages.scikitlearn ]; }
|
||||
mkShell {
|
||||
buildInputs =
|
||||
[ python38 python38Packages.pandas python38Packages.scikitlearn ];
|
||||
}
|
||||
|
|
|
@ -0,0 +1,26 @@
|
|||
from pandas import read_csv
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
|
||||
|
||||
def replace_values(df):
|
||||
columns = ["BI-RADS", "Margin", "Density", "Age"]
|
||||
for column in columns:
|
||||
df[column].fillna(value=df[column].mean(), inplace=True)
|
||||
return df
|
||||
|
||||
|
||||
def process_na(df, action):
|
||||
if action == "drop":
|
||||
return df.dropna()
|
||||
return replace_values(df)
|
||||
|
||||
|
||||
def encode_columns(df):
|
||||
encoder = LabelEncoder()
|
||||
encoder.fit(df["Shape"])
|
||||
|
||||
|
||||
def parse_data(source, action):
|
||||
df = read_csv(filepath_or_buffer=source, na_values="?")
|
||||
processed_df = process_na(df, action)
|
||||
return processed_df
|
|
@ -0,0 +1 @@
|
|||
from preprocessing import parse_data
|
Loading…
Reference in New Issue